Ôóòáîë-îíëàéí Ô-Î íà Facebook
Â³ä   ̳é å-ìåéë: ̳ñòî, Êðà¿íà:
 
Çàðåºñòðóâàòè í³ê | Ïåðåâ³ðèòè í³ê
Ìàþ ñêàçàòè: < >>> Äîïîìîãà äëÿ äîïèñóâà÷³â <<<
Normal Translit Rus Translit Ukr           

Ïîøóê:  ïîâ³äîìëåííÿ ¹ àâòîð ùî ì³ñòÿòü
³äîáðàæåííÿ:  Ñòîð³íêà ïî    ( â ò.÷. ïðèõîâàí³)


¹166490, 2025-12-09 10:09:07  ï³äòðèìàòè
Dmytro

Òå, ùî òóò îáãîâîðþâàëè áàãàòî ðàç³â, â÷åí³ ï³äòâåðäèëè çà äîïîìîãîþ åêñïåðèìåíòó. Çðîáèëè ñîö ìåðåæó ç òðüîìà âàð³àíòàìè àëãîðèòìó: 1) áåç âïëèâó ëàéê³â, ïåðåïîñò³â ³ ÷àñó ïåðåãëÿäó; 2) ç âïëèâîì ëàéê³â ³ ïåðåïîñò³â (ñîöìåðåæ³ 2010õ); 3) ç âïëèâîì ÷àñó ïåðåãëÿäó (Ò³êÒîê ³ ñîöìåðåæ³ 20õ).

Ðåçóëüòàò íà ãðàô³êó:

https://t.prcdn.co/img?regionKey=sKs9k2b...

Êëþ÷îâ³ ìîìåíòè (in-group öå ãðóïà äî ÿêî¿ íàëåæèòü ÷èòà÷, out-group - öå ïðîòèëåæíà, "âîðîæà" ãðóïà):

Their key insights are that con­tent relat­ing to crime, immig­ra­tion, race, gender and cri­ti­cism of elites reli­ably increases view­ing fig­ures (while eco­nom­ics and health­care causes people to switch away). This means there is a res­ult­ing shift in cov­er­age towards more cul­ture war issues and fewer socio-eco­nomic stor­ies, which leads voters to rate these issues as more import­ant. Politi­cians then respond by cam­paign­ing more on cul­tural hot but­ton top­ics.

the recom­mend­a­tion algorithm based on likes and shares (essen­tially how social media worked dur­ing the 2010s) con­sist­ently boos­ted posts that praised the viewer’s in-group and blamed their out-group, as well as push­ing much more polit­ical mes­sages into people’s feeds.

The Tik­Tok-style algorithm, which swapped out act­ive likes and shares for more subtle meas­ures of pass­ive, uncon­scious engage­ment, had sim­ilar res­ults in sig­ni­fic­antly boost­ing divis­ive polit­ical con­tent. But it also sur­faced far more neg­at­ive con­tent attack­ing out-groups than pos­it­ive con­tent prais­ing fel­low group-mem­bers.


Young people’s much greater con­sump­tion of social media maps neatly on to the emer­gence of a divide in the polit­ical atti­tudes and issue pri­or­it­ies of young men and women (but not their eld­ers). It also explains two under-dis­cussed nuances of the youth gender divide. First, that most of the diver­gence is com­ing from young women (the heav­iest social media users in soci­ety), and second that it’s driven in part by a decline in young people answer­ing “don’t know” to ques­tions on polit­ical ideo­logy — con­sist­ent with the explo­sion of polit­ical and cul­ture war con­tent in their lives.

To be clear, the media land­scape can’t explain everything. Still, par­al­lel seis­mic frac­tur­ings of the inform­a­tion envir­on­ment and soci­opol­it­ical cohe­sion are unlikely to be a coin­cid­ence.

https://ft.pressreader.com/v99e/20251108...
Ïîêàçàòè âèáðàí³ ïîâ³äîìëåííÿ>>>
Ïîøóê:  ïîâ³äîìëåííÿ ¹ àâòîð ùî ì³ñòÿòü
³äîáðàæåííÿ:  Ñòîð³íêà ïî    ( â ò.÷. ïðèõîâàí³)

Copyright (c) Graf de Robot, 2002-2003. All Rights Reserved.

       ãîëîâíà êàðòà ñàéòó ïîøòîâà ñêðèíüêà Ñàéò: Graf de Robot, Pervak, Vladimir
Àäìèíèñòðèðîâàíèå: DmP, Graf de Robot
© football-online.com.ua 2001-2010